

Autosub Long Range: towards a shore launch shore recover AUV capability

Dr Alexander Phillips abp@noc.ac.uk

Contents

- Long range platforms as part of a NZOC Capability
- Autosub Long Range
- Deployments so far from 2022
 - TARSAN: Under the Dotson Ice Shelf
 - Oceanids Sensors: DY149 Southwest Approaches
 - Long Distance Proving Trial: 2000km from Plymouth to the Shelf break and back again
 - DY152: Benthic Imaging in the Greater Haig Fras and South West Deeps (East) MPA
- Future Developments
- Final Thoughts

Long range platforms as part of a NZOC Capability

Long Range MAS platforms can be in the water for weeks, months or even a year providing temporal coverage not typically available with a conventional research ship

Potential Concepts of Operation

- Force Multiplication
- Shore Launch Shore Recover
- Vessels of Opportunity
- Persistent Presence

Motivation for Autosub Long Range – DOLPHIN (1987)

DOLPHIN (Deep Ocean Long Path Hydrographic Instrument) to gather water column data beneath Antarctic ice sheets. (Polly Williamson)

Parameter	Target Specification
Range	7000km
Speed	2.5m/s
Length	5m
Depth Range	0-6000m
Payload	Triplicated Neil Brown CTD
Navigation	Dead Reckoning with Compass and Prop RPM

Force Multiplication (TARSAN – Q1 '22)

Multi-day deployment of ALR1 from the Nathanial B Palmer under Dotson Glacier as part of TARSAN International Thwaites Glacier Collaboration

Longest track was 40km in under the ice flying at circa 100m altitude

THWAITES GLACIER

0 100 200 300

National Oceanography Centre | National Marine Facilities

https://thwaitesglacier.org/projects/tarsan

Force Multiplication (Biogeochemistry Q1 '22)

AUV	ALR2
Depth Rating	6000 m (Nominal) Currently de-rated to 600 m
	for sensor payload
Energy	Lithium Thionyl Chloride (~10 Days)
System sensors	300 kHz RDI ADCP
	PNI Magnetic Heading Sensor
	CTD SBE 52
Science sensors	CTD SBE 52 MP + DO
	 ADCPs as per system ADCPs
	DO SBE 43F
	AutoNuts – Nutrients
	 LOC Nitrate
	 LOC Silicate
	 LOC Iron (Chemiluminescent)
	o LOC Iron
	 LOC Nitrite
	 LOC Phosphate
	Carcass – Carbonate
	o LOC pH
	o LOC TA
	o LOC DIC
	o ANB pH
	 Stafes-App – Primary Productivity

5 day continuous mission traversing across spring bloom and front features from shelf to deep water with collocated ship based noc.ac.uk/facilities CTD measurements

Shore Launch Shore Recover (ALR4 Long Distance Proving Trial (LDPT) April 22)

Objectives:

- Proof of concept of long range over the horizon operations
 with an ALR over a distance of 2000km and over a month
- Quantify real world performance (e.g. straight line navigation)
- Demonstrate a range of potential sampling approaches
- Better understand our needs for near real time data transmission

LDPT Vehicle Configuration

Battery: 74kWh LTC

Payload Sensor Fit:

- An upwards and downwards Nortek 500kHz ADCP,
- Seabird 52MP CTD with Seabird 43F DO,
- Wetlabs CDOM Fluorometer (ECO-FLCDRTD)
- NOC 4000m range echosounder
- Octans Fibre Optic Gyro
- Self contained NOC pH LOC,
- Self contained Seabird SeapHOx,

Secondary Beacons:

- Xeos Iridium
- Marker 6 Acoustic
- Argos

LDPT Launch and calibration

- ALR4 Shipped to Plymouth from Southampton then fitted with batteries and final checks completed
- ALR4 was launched from Thales Turnchapel Facility on the 10th May
- Towed South of the Plymouth Breakwater by Thales RHIB
- Compass Calibration South of Plymouth Breakwater (M41)
- Compass/DVL Alignment South of Plymouth Breakwater (M42 & M43)
- CTD Cross Calibration with PML Quest at L4 Station 10Nm South-West of Plymouth (M44)

LDPT Deployment Overview

- 5 weeks of unaccompanied operation in South West Approaches
- Piloted remotely from Southampton surfacing roughly every 24hours
- Deep Dives Down the Brenot Spur max depth 1011m
- Range of sampling strategies undertaken during the transit and at the Candyfloss site

Altitude

LDPT Recovery

AUV was recovered to Plymouth on the 13th June having travelled circa 2000km maximum dive to 1011m

- Used circa half of the 74kWh installed
- No evidence of collision or damage during towing
- Minimal biofouling
 - initial colonisation by hydroids on the external surfaces originating at seams and panel joints
 - Initial Colonisation by hydroids inside the hydrodynamic fairing
 - No evidence of barnacles
- Limited Corrosion
 - · Main pressure vessel appears well protected by anodes and anodising
 - Visible corrosion of bulkhead connectors
 - Minor corrosion of some stainless steel components
 - · Titanium components look unaffected
- Silt and detritus inside the hydrodynamic fairing

Force Multiplication (DY152 ALR3/BioCam July 22)

- NMEP Trials Cruise to Greater Haig Fras and Whittard Canyon
- 2 Multi-day deployments, 15 Missions in Greater Haig Fras in vicinity of RRS Discovery
- 85km BioCAM survey at 4m or 5m altitude

M50 Greater Haig Fras (Preliminary Results)

laser-line-based bathymetry maps

Images courtesy of: Adrian Bodenmann and Jose Cappelleto

Ships of Opportunity (DY152 Over the Horizon Operation of Autosub Long Range / BioCAM)

- Opportunistic deployment of ALR3/BioCAM in the South West Deeps (East) MPA whilst the RRS Discovery was operating at Whittard Canyon
- ALR3 deployed from the Discovery on route. Following a short test period with the ship on station the rest of the 5 deployment was piloted remotely via Iridium
- Missions were a mixture of:
 - 80m and 25m altitude transects
 - · OAS testing over sand ridges
 - · Virtual mooring at 80m altitude to gather ADCP data
 - 3 BioCAM missions covering a distance of 95km mapping circa 47ha at 5m altitude
- Key to improve:
 - Quantity and quality of near real time data

Insite ATSEA (Sept/Oct 2022)

- INSITE is an independent science programme examining the effects of man-made structures in the North Sea
- The Autonomous Techniques for anthropogenic Structure Ecological Assessment
 ATSEA project is aiming to assess the feasibility and efficacy of fully autonomous
 monitoring of multiple decommissioning-related sites without the aid of a support
 vessel by demonstrating the use of an existing shore-launched, long-range, fully
 autonomous underwater vehicle for marine environmental survey.

Current Status

- ALR3 launched from Lerwick Monday 19th September for Northern Leg
- ALR3 arrived at the North West Hutton decommissioned oil and gas field Friday
 23rd having transited 170km from shore unaccompanied
- At the decommissioned NW Hutton ALR3 performed a mixture of water column and camera surveys around the remaining infrastructure generating 50km of benthic imagery
- On Sunday 25th ALR3 began the return leg back to Lerwick
- ALR3 was recovered on 26th back at Lerwick
- ALR3 was deployed for the Southern leg on the 27th September
- ALR3 reached Miller Site 4th October conducting 3 15km imaging surveys at a range of altitudes
- ALR3 undertook a short survey on the Breamar pockmarks MPA 6th November
- ALR3 recovered 11th November

Images and micro-bathymetry being processed but preliminary results to follow:

Future Developments

- Future sensor fits
 - · Integration of multibeam echosounder
 - Integration of benthic and pelagic camera systems
 - Integration of a scientific echosounder
 - Integration of samplers
 - Integration of PAM
 - ...
- Enhanced low power navigation and data fusion
- Stretch ALR extended endurance shore launch shore recover capability
- Improved near real time data transmission
- Adaptive sampling
- Drift/glide/listen mode
- Mooring system for persistent presence

Closing Thoughts

- 35 years since the initial DOLPHIN concept and we are finally edging towards delivering that vision
- Operations in 2022 have demonstrated the flexibility of the ALR platform and its ability to act as both a force multiplier for research vessels or act alone shore launch shore recover.
- We believe at circa 2000km and 5 weeks LDPT is the longest deployment of a Large AUV and there is clear potential and aspiration to go for longer
- Increasing option in terms of sensor payloads coupled with an increasing need to enhance autonomy to ensure measurements made in the right place at the right time
- Looking forwards, its clear that long range autonomous systems (AUVs, Gliders, USVs) operating over the horizon will play an important role in delivery of a global ocean observing system and a net zero oceanographic capability

Marine Facilities Planning

n order to apply to use these marine facilities you must be a registered user of the Marine Facilitie Planning Website.

Please request an account or login above